If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=47
We move all terms to the left:
n^2-(47)=0
a = 1; b = 0; c = -47;
Δ = b2-4ac
Δ = 02-4·1·(-47)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{47}}{2*1}=\frac{0-2\sqrt{47}}{2} =-\frac{2\sqrt{47}}{2} =-\sqrt{47} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{47}}{2*1}=\frac{0+2\sqrt{47}}{2} =\frac{2\sqrt{47}}{2} =\sqrt{47} $
| U=4n+1 | | 4x+47=(36)+(7x-4) | | 8/10=13/x | | 2(4-c)=-4(5-3c) | | (x+6)(2x+4)=0 | | -9=-4+x/6 | | 553=48h+265 | | -150-25x-25x=7-30x | | 4x+15+2x=5x-3x-4x+25 | | -x/2+1=3–x | | (p-4)÷5=-13 | | -x/2+1=3–x | | 2x+15=(6x-45) | | 4a-5a+20=17-18 | | (27-x^2)/4=0 | | −2a−9=39 | | 3x–1=81 | | 2x^{2}-21x-36=0 | | 15=3(m-5) | | 22=5x+1-2x | | 13x-4=24x+7 | | 10x+3=12(x-1) | | |2x-2|=8 | | -3a-32=-10+8a | | 2x-6/7+5=15 | | -3(2x-1)=10x-9 | | 3^x^2-x+12=9^9-x | | 4(x+2)/5=20 | | 9x+-9=-4 | | (-7b^2-12)-(10b^2-4)= | | -8t+3=16-21t | | 3+9x=4+8x |